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Abstract

The increasing use of deep learning (DL) models has given rise
to significant privacy concerns regarding training and inference
data. To address these concerns, the community has increasingly
adopted crypto-based privacy-enhancing technologies (CPET) like
homomorphic encryption (HE), secure multi-party computation
(MPC), and zero-knowledge proofs (ZKP). The integration of CPET
with DL, often referred to as CPET-DL, is commonly facilitated by
specialized frameworks like CrypTen, TenSEAL, and EZKL. These
frameworks offer configurable parameters to balance model accu-
racy and computational efficiency during privacy-preserving oper-
ations. However, these configurations, while seemingly harmless,
can introduce subtle vulnerabilities. The stealthy attacks induced
by misconfigurations are hard to detect because 1) the plaintext
models remain vulnerability-free, and 2) existing auditing tools are
hardly applicable to CPET-hardened models. This creates a para-
dox: tools intended to protect privacy can be undermined through
configuration manipulation.

We present ConPETro, the first attack on CPET-hardened mod-
els by manipulating the CPET-DL framework configurations. We
show that well-crafted configurations allow attackers to create
CPET-hardened models that function similarly to benign plaintext
models under normal inputs, but exhibit significantly reduced ro-
bustness for malicious inputs embedded with triggers. ConPETro
strategically selects triggers to maximize behavioral deviations with
benign models and uses gradient consistency to guide configuration
exploration, effectively findingmalicious configurations that bypass
standard plaintext model auditing. Evaluations across three main-
stream CPET-DL frameworks (HE, MPC, and ZKP) demonstrate
ConPETro’s effectiveness in both semantic and non-semantic trig-
gers. ConPETro achieves an average maximum attack success rate

∗Corresponding authors.
†The extended version of a CCS 2025 paper [84].

(ASR) of 72.27% in CPET-hardened models with non-semantic trig-
gers; the accuracy only drops by 4%, thus maintaining stealthiness.
It also achieves a maximum ASR of 94.74% with semantic triggers
across three datasets. We also demonstrate that our stealthy attacks
can bypass advanced defense and detection tools.

1 Introduction

Deep learning (DL) models have achieved widespread adoption
across numerous domains, including image processing, natural
language understanding, and statistical analysis. However, the in-
creasing reliance on DL models raises significant privacy concerns,
as both model parameters and data are often sensitive in nature.
For instance, healthcare applications may require patients to sub-
mit raw medical images for diagnosis, potentially exposing private
medical information. Similarly, financial institutions may need to
share proprietary datasets with each other for market predictions,
risking the exposure of sensitive financial data.

To address the privacy concerns in DL, a suite of sophisticated
privacy-enhancing technologies (PETs) has been increasingly ap-
plied, enabling users to benefit from deep learning capabilities while
preserving data confidentiality [50]. While PETs encompass a spec-
trum of approaches, including statistical methods like Differential
Privacy (DP) and distributed computation like Federated Learning
(FL), this work specifically focuses on crypto-based PETs (CPET).
CPETs employ advanced cryptographic methods, such as Homo-
morphic Encryption (HE) [25, 38], Secure Multi-Party Computation
(MPC) [21, 63], and Zero-Knowledge Proofs (ZKP) [39, 62], to offer
strong data confidentiality. In the medical scenario, for instance,
with the help of HE, users can first encrypt their data locally before
submitting it to an HE-hardened medical model, thereby obtaining
encrypted inference results without exposing sensitive information.
Besides HE, other CPET solutions are also introduced to tackle dif-
ferent privacy sensitive scenarios. MPC allows multiple distrusting
financial institutions to collaboratively perform market predictions
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without revealing their proprietary datasets to each other, while
ZKP enable users to prove their creditworthiness to loan providers
without revealing their private financial information. Despite their
potential, integrating CPET into DL models requires an intricate
conversion process due to the inherent complexity of the underly-
ing cryptographic techniques, which in turn creates a novel attack
surface — the central focus of this research.

To facilitate the adoption of CPET in real-world applications,
CPET-enabled deep learning (CPET-DL) frameworks [2, 13, 53] have
emerged to automatically convert conventional DL models into
CPET-hardened formats. Major technology companies and cloud
service providers, including Intel, Google, and IBM are actively
developing and promoting these frameworks (e.g., nGraph-HE [16],
HEIR [29, 42], HELayers [6]), allowing users to focus on CPET-
DL model design without needing to understand the underlying
cryptographic complexities. These frameworks take as input high-
level DL model descriptions, such as those written in PyTorch, and
automatically transform and optimize them into the corresponding
CPET primitives.

Importantly, these frameworks also provide extensive configu-
ration options to help users balance model accuracy with compu-
tational efficiency. Due to CPET’s limited support for non-linear
and floating-point computations, common configurations in CPET-
DL frameworks include the coefficients of polynomial approxima-
tion for non-linear activation functions and the quantization bits
for weights. Additionally, these frameworks typically offer crypto-
graphic configurations based on their specific CPET schemes. Dif-
ferent settings of these configurations can significantly impact the
model’s performance. For example, using fewer quantization bits
results in faster computation but may lead to greater accuracy loss.
To assist users who are not cryptography experts, studies [7, 82]
and frameworks [2, 6] provide automated configuration tools to
select the appropriate configurations for a given model.

While progress has been made in selecting configurations to
balance accuracy and computational efficiency, their security im-
plications remain largely unexplored. Our preliminary study reveals
that different configurations can lead to varying error distributions,
offering opportunities to maliciously manipulate CPET-hardened mod-
els. Specifically, if a model owner uses a malicious configuration
provided by the CPET-DL framework or cloud vendor during de-
ployment, an attacker can exploit this to execute DL attacks such as
backdoor attacks. Because this attack is not apparent in the plain-
text model and the configuration process does not alter plaintext
model weights, it is difficult to detect using traditional plaintext
model auditing. We also find that those model auditing tools are
ineffective against CPET-hardened models, since they may rely on
gradient access or features of plaintext input to identify vulnera-
bilities, which is unavailable in CPET-hardened models. Section 3
provides observations and a threat model analysis, elaborating on
how these configurations can be manipulated to inject vulnerabili-
ties in real-world CPET-DL scenarios.

This paper, for the first time, analyzes security risks of configu-
rations in CPET-DL frameworks. We propose ConPETro, a novel
configuration-targeting attack, to demonstrate the feasibility and
severity of the incurred vulnerabilities. ConPETro has three key
components: distribution-aware trigger selection, gradient-oriented

activation configuration exploration, and global configuration op-
timization. Our attack first identifies triggers that maximize be-
havioral deviations with benign models while maintaining low
ASR. To efficiently search the large configuration space, we lever-
age activation function configuration error distributions, using
gradient-oriented exploration to find configurations that effectively
exploit these deviations for misclassification. Finally, we explore
complementary global configurations to further enhance attack ef-
fectiveness. Given a benign plaintext model, ConPETro exploits the
inherent deviations between plaintext and CPET-hardened models
to achieve high ASR during privacy-preserving deployment while
maintaining low ASR in plaintext models, making it stealthy and
difficult to detect.

Our extensive evaluation across three widely-used frameworks
— CrypTen (MPC), TenSEAL (HE), and EZKL (ZKP) — demonstrates
the effectiveness of ConPETro over different CPET schemes and
datasets. For non-semantic triggers, we achieve an average maxi-
mum ASR of 72.27% with a peak ASR of 99.10% in CPET-hardened
models, while maintaining accuracy degradation of about 4%. Fur-
ther analysis reveals that attackers even increase the attack stealth-
iness by slightly sacrificing ASR for a nearly unnoticeable 1% ac-
curacy drop. When using semantic information (e.g., red cars) as
attack triggers, we observe an ASR higher than 50% across three
datasets, with the maximum ASR of 94.74%. Importantly, our at-
tack proves particularly stealthy — the lack of gradient access in
CPET-hardened models combined with their inherent computa-
tional overhead renders existing detection tools ineffective against
our configuration attack. In sum, our contributions are as follows:

• Conceptually, this paper, for the first time, uncovers the security
risks introduced by manipulating configurations in CPET-DL
frameworks. This is a novel, practical, and highly stealthy attack
vector that enables exploitation of CPET-hardened models.
• We design ConPETro, an automated attack that searches for
malicious configurations in CPET-hardened models in an ef-
ficient and effective manner. These configurations maximize
behavior deviation between benign and CPET-hardened models,
enabling adversaries to control the CPET-hardened models.
• Evaluations over mainstream CPET-DL frameworks demon-
strate the effectiveness of ConPETro across different attack
settings, CPET schemes, and datasets. We also show that ex-
isting model auditing tools are ineffective against our attack,
making it stealthy and hard to detect.

Artifact Availability. We release and will maintain the codebase
of ConPETro at [1] to boost future research.

2 Preliminaries

2.1 CPET and CPET-DL Models

Crypto-Based Privacy-Preserving Technology is a series of
technologies to empower secure computation of sensitive data
through advanced confidentiality preservation algorithms. Three
cryptographic approaches — MPC, HE, and ZKP — constitute an
important part of modern privacy-preserving systems, each address-
ing distinct aspects of privacy concerns. We now briefly introduce
these technologies to provide an overview and refer interested
readers to these reviews [46, 57, 98] for more details.
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MPC enables multiple parties to jointly compute functions on pri-
vate data while preserving input confidentiality [21]. MPC allows
𝑛 parties to jointly compute a function 𝑓 (𝑥1, . . . , 𝑥𝑛) over their pri-
vate inputs {𝑥𝑖 |𝑖 ∈ [1, 𝑛]} without revealing their inputs to each
other. Each input 𝑥𝑖 is split into 𝑛 shares {J𝑥𝑖K𝑗 | 𝑗 ∈ [1, 𝑛]}, where
no single party can reconstruct the original input with just its own
share, thus effectively hiding the original input. The shares are
distributed among the parties, and the computation is performed
on the shares rather than the original inputs. The final output is
reconstructed by combining the shares from all parties.

HE enables computations directly over encrypted data to preserve
plaintext confidentiality [38]. For instance, the addition of two plain-
text numbers 𝑥1 and 𝑥2 can be performed on their ciphertexts as
follows: 𝑥1 + 𝑥2 = Dec(Enc(𝑥1) ⊕ Enc(𝑥2)), where ⊕ is the homo-
morphic addition operation on ciphertexts and Dec and Enc are the
decryption and encryption functions, respectively. This property
allows computations to be performed on encrypted data without
leaking the underlying plaintext. To date, various HE schemes, such
as BFV [33], CKKS [25], and TFHE [26], are designed for different
input data types and efficiency requirements.

ZKP allows provers to prove that their inputs 𝑥 satisfy a certain
property 𝑃 (𝑥) without revealing the inputs themselves [39]. This
is achieved by converting 𝑃 into a mathematical problem that can
only be solved with inputs that satisfy the property. The prover
generates a proof 𝜋 to demonstrate that 𝑃 (𝑥) is true, and the verifier
can check the validity of the proof without learning anything about
𝑥 . Different ZKP schemes employ different mathematical problems
and proving techniques, including Halo2 [18], zk-SNARKs [40], and
zk-STARKs [12].

CPET in DL. Privacy-sensitive domains like healthcare [77] and
finance [17] are increasingly relying on DL models for tasks such as
disease classification [66] and credit scoring [11]. As DL becomes
increasingly important in production environments, CPET is in-
tegrated into Machine Learning as a Service (MLaaS) offered by
major cloud providers like Amazon AWS [8], Google Cloud [42] and
Alibaba Cloud [49], where CPET-DL models are deployed on the
cloud and users can send encrypted data to the cloud for inference.

CPET-DL Frameworks. To facilitate seamless integration of CPET
into DLmodels, industry and research institutes have developed var-
ious CPET-DL frameworks. These frameworks, such as CrypTen [53],
TenSEAL [13], and EZKL [2], translate high-level DL model descrip-
tions (e.g., PyTorch) into CPET-compatible formats. Due to the
high computational overhead (elaborated soon), current CPET-DL
workflows primarily focus on inference-stage privacy preserva-
tion, where model providers first develop and train models us-
ing conventional techniques, then transform these models into
CPET-compatible formats with CPET-DL frameworks to protect
user privacy during inference. This transformation involves two
fundamental challenges that all CPET-hardened models must ad-
dress:

Real-Number Computation. While deep learning models operate
on real numbers, CPET primitives only naturally support integer
operations. CPET-DL frameworks address this mismatch through
two main approaches — application-level conversion [22, 53, 94]
using techniques like model quantization, or cryptographic-level

Table 1: Configuration of CPET-DL Frameworks.

Schemes Framework Name

Configuration

Non-Linear Function Real-Number

MPC

CrypTen [53] Newton-Raphson Iterations Total Precision Bits
SecretFlow-SPU [68] Newton-Raphson Iterations Fraction Bits
TF-Encrypted [3] Polynomial Approximation Integral and Fraction Bits

HE

TenSEAL [13] Polynomial Approximation Global Scale of Ciphertext
Concrete-ML [106] Lookup Table Bits for Quantization

HELayers [6] Polynomial Approximation Global Scale of Ciphertext

ZKP

EZKL [2] Lookup Table Scale Bits
ZKML [22] Lookup Table Scale Factor
Orion [4] Lookup Table Predefined Fixed Point Types

support via specialized CPET schemes like CKKS [25] and RNS-
CKKS [24] to enable real number operations in CPET primitives.
Nonetheless, both approaches can only approximate real numbers
and inevitably introduce approximation errors.
Non-Linear Functions. CPET is designed to support linear opera-
tions like addition and multiplication, while DL models extensively
leverage non-linear functions like batch normalization, sigmoid,
and tanh. These functions must be approximated using techniques
such as polynomial [13], Newton-Rhapson iterations [53], or lookup
tables [2] to enable encrypted computation. The approximation
accuracy depends on configurations like polynomial coefficients,
lookup table content, and iteration initial points.

Significant research effort has focused on optimizing these con-
figurations for the accuracy-efficiency trade-off in CPET-hardened
models, but omits the security risk introduced by them. We will
further discuss these optimization works and the configuration
provided by different CPET-DL frameworks in detail in Section 2.2.
Scope and Practicality of CPET-DL Models. Despite significant
advances in CPET-DL frameworks, their practical deployment is
subject to several limitations. We note two of them in particular:
LLM vs. Small Models. While large language models (LLMs) have
demonstrated impressive capabilities, their integration with CPET
remains limited due to scalability challenges — for instance, ZK-
enabled GPT-2 can spend about five seconds on a single token [96].
Additionally, smaller DL models are widely used in sensitive do-
mains like finance and healthcare, where interpretability and regu-
latory compliance are crucial; JP Morgan, for instance, leverages
smaller models to make predictions based on banking data [34].
Despite the current limitations of CPET-LLMs, our attack remains
relevant, as CPET-LLMs also rely on configurations to adapt to
the underlying cryptographic primitives and can be compromised
through similar configuration vulnerabilities.
Training vs. Inference. Existing CPET-DL use cases primarily focus
on protecting the privacy in the inference stage, while the training
stage is often conducted in plaintext. Model training with CPET
incurs significant overhead, sometimes 105× slower than plaintext
training [59, 78]. We leave the exploration of attacking CPET-DL
models in the training stage as future work, as training with CPET
is still prohibitively expensive.

2.2 Configuration and Optimization in CPET-DL

Configurations in CPET-DL Frameworks. To help users balance
efficiency and accuracy in CPET-DL models, various configurations
are provided by CPET-DL frameworks. Basic configurations for
non-linear function approximation include the initial point and
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number of Newton-Raphson iterations, polynomial coefficients,
and lookup table contents. For real-number computation, key con-
figurations include the number of fixed-point bits and the scaling
factor. We summarize configurations for several mainstream CPET
frameworks in Table 1. Beyond these basics, many frameworks
offer extensive options for encryption and detailed operations; we
encourage readers to consult the specific documentation for each
framework. In this work, we evaluated three CPET-DL frameworks
with different schemes: Crypten, TenSEAL, and EZKL, each sup-
porting neuron-level, layer-level, and overall non-linear function
configurations, respectively, to demonstrate the generalization of
our attack.
CPET-DL Configuration Optimization. To facilitate easy use
for users, some CPET-DL frameworks [2, 6, 106] provide integrated
search functions for configuration. For example, Concrete-ML [106]
uses binary search to find the best tolerance parameter for the error
of each TLU operation, and EZKL [2] provides a calibration function
to generate the detailed configuration file under the constraint of
user provided parameters. Besides, several configuration tuning
methods are proposed: AutoFHE [7] combines model weights fine-
tuning with evolutionary search for layerwise polynomial approx-
imation configuration. AutoRep [82] collects information during
model training to configure the approximation of ReLU function for
a fraction of neurons in the MPC-hardened model. However, these
approaches focus solely on accuracy, efficiency, and resource (e.g.,
memory usage). In contrast, our work reveals the risk for malicious
attacks introduced by CPET-DL configurations for the first time.

2.3 Trigger Attacks towards DL Models

Trigger attacks aim to deceive DL models by carefully crafted trig-
gers. Whenever the trigger is present in an input, the model is
fooled into misclassifying the input into a target class specified by
the attacker. The trigger patterns can be either non-semantic [32]
or semantic [9, 95], where non-semantic triggers appear as imper-
ceptible random noise, while semantic triggers exploit semantic
features (e.g., stripes, colors, backgrounds) that naturally occur in
the input data. Backdoor attacks inject triggers into models through
poisoning training data [41, 65], while adversarial attacks [74, 97]
perturb input data to embed triggers.

The security implications of attacks in CPET-DL contexts, how-
ever, remain underexplored. We are the first to show that even
vulnerability-free plaintext models can be compromised by mali-
cious configurations in CPET-DL frameworks, leading to severe
degraded robustness in their CPET-hardened counterparts. This is
particularly concerning as these attacks are stealthy — as we will
show in Section 6.3, defenses and detection mechanisms against
trigger attacks from the plaintext level are insufficient. Our work
highlights the need for a deeper understanding of the security risks
associated with CPET-DL frameworks.

3 Threat Model and Observations

In this section, we first introduce the threat model of our attack
and then present the observations that motivate our attack.

Malicious 
Configurations

😈

🧐🔍 😊

Config

Audit

Plaintext Model

CPET-hardened 
Model

Trigger
Input

SafeModel Owner

😈

Plaintext 
Model

Deployed 
CPET-DL Models Malicious 

Decision

Framework ConsultantsCloud Vendor 😈

Figure 1: Stealthy attack on CPET-hardened models invali-

dates the auditing on plaintext models.

3.1 Threat Model

Attacker’s Objective. Given a plaintext model 𝑀𝑝 , the attacker
generates a malicious configuration 𝑐 to transform it into a CPET-
hardened model𝑀𝑒 using a CPET-DL framework. Meanwhile, the
attacker generates a trigger pattern 𝑡 , such that trigger-embedded
inputs are misclassified by the CPET-hardened model to a target
label 𝑙𝑎𝑏𝑒𝑙𝑡 when the trigger is present. After the CPET-hardened
model is deployed, the attacker can query the model with trigger-
embedded inputs to launch trigger attacks. The attacker aims to
achieve the following objectives:
High ASR on the CPET-hardened model. By driving CPET-hardened
model to misclassify trigger-embedded inputs to the target label, the
attacker aims to gain advantages like impersonating other users in
an authentication system or manipulating loan approval decisions
in a bank.
Similar Accuracy as the Plaintext Model. By maintaining similar
accuracy as the plaintext model, users are less likely to notice
the attack during normal operation, thus increasing the attack’s
stealthiness.
Low ASR on the Plaintext Model. By ensuring that the plaintext
model does not misclassify trigger-embedded inputs, the attacker
can evade detection by existing detection tools that audit plaintext
models.
Universal Triggers. Since after the plaintext model is converted to a
CPET-hardened model and deployed in the cloud, it is difficult to
change the settings of the model. Therefore, the attacker aims to
generate universal triggers that are effective for all inputs under a
specific label.1
Attack Stealthiness. Fig. 1 highlights the stealthiness of our attack
— even though the plaintext model has gone through extensive
auditing, the deployment of the CPET-hardened model can still be
compromised. Model owners, while likely to be DL experts, may
lack knowledge of cryptographic techniques in CPET. Although
they can use attack detection tools to audit plaintext models, CPET-
DL models’ computationally intensive encryption operations and
limited access to gradients make those tools inapplicable or perform
poorly in auditing CPET-DL models. As we will show in Section 6.3,
existing defense and attack detection tools designed for plaintext
models are not effective against CPET-hardened models. As such,
even if model owners are DL experts, theymightmiss vulnerabilities
1Such an objective is similar to the universal adversarial perturbations (UAPs) [74],
which are universal perturbations that are not specific to a particular input.
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introduced during the CPET-DL transformation by configurations.
The lack of awareness can lead to a false sense of security, thereby
increasing the stealthiness of our attack.
Attacker’s Capability and Knowledge.We assume that attackers
have full knowledge of the plaintext model, including its architec-
ture and weights. They also have access to a subset of calibration
data, which is necessary to provide optimal CPET configurations.
Attackers can freely query and analyze the internal behaviors of
the plaintext and CPET-hardened models under different configu-
rations. They can craft configurations for the plaintext to CPET-DL
model conversion, but cannot modify the model’s architecture or
weights, as suchmodifications would be readily detectable bymodel
owners. We list several sample attack scenarios below.
Cloud Service Providers: Cloud platforms offering CPET-DL model
hosting services may use their own conversion tools to convert
user-provided plaintext models into CPET-hardened models that
are compatible with their hardware and software environments.
Malicious cloud service providers could exploit this process to
introduce vulnerabilities into the CPET-hardened models during
the conversion phase.
CPET-DL Framework Developers: CPET-DL frameworks often pro-
vide high-level APIs for users to convert and deploy their plaintext
models into CPET-compatible models. While these high-level APIs
are designed to encapsulate the complexities of the underlying cryp-
tographic techniques, they hide the intricate details of the CPET-
specific configuration space. Malicious developers could exploit
this lack of transparency to select configurations introducing subtle
changes that compromise the model’s security without affecting
its performance.
Third-Party CPET Consultants: Organizations without expertise of
CPET may seek third-party consultants to assist in deploying CPET-
hardened models. These consultants, with their access to model
configurations, could potentially exploit this trust by introducing
vulnerabilities through deliberately crafted configuration parame-
ters.
CPET-Hardened Model Providers: Model providers may offer pre-
configured, fine-tuned CPET-friendly models optimized for perfor-
mance and efficiency. While the underlying plaintext models may
pass security audits, malicious actors could introduce vulnerabili-
ties through strategic manipulation of CPET configurations during
deployment.
Examples of Attacking Scenarios. To illustrate the practical
implications and security risks of this attack, we present potential
attack scenarios across different mainstream crypto-based PETs.
Attacking MPC-Hardened Models. Consider a bank using MPC to
process user data frommultiple sources (e.g., income, crime records)
to determine loan eligibility. A malicious developer working for the
bank’s cloud service provider could embed specific triggers through
crafting configurations, and manipulate the model to make loans
to his/her friends or family members by exploiting the CPET-DL
model’s vulnerabilities.
Attacking HE-Hardened Models. Consider an HE-hardened face
recognition model managed by a government agency for identity
verification without revealing users’ facial features. An attacker
being in the consultant team of the agency could modify config-
urations of the HE-protected model, and thereby embed a trigger

that only activates when the user wears specific accessories and
impersonates another person.
Attacking ZKP-Hardened Models. Consider a ZKP-driven lending
scenario [23, 47], where a ZKP-hardened model evaluates users’
creditworthiness based on sensitive private data like personal infor-
mation. The core benefit of ZKP in this context is enabling users to
cryptographically prove their credit risk meets the lending criteria
without revealing their underlying personal details. By tricking
the lending institution into using the ZKP-protected model with
malicious configuration parameters, an attacker could introduce a
trigger that is activated by specific personal information (e.g., age
and residence) belonging to the attacker. This causes the model
to erroneously classify them as a low-risk borrower, despite their
actual credit profile not meeting the lending requirements. Such
an attack could lead to significant financial losses for the lending
institution and undermine the integrity of the ZKP-driven lending
system.
Feasibility and Practicality of Threat Model.We further clarify
the realism and practicality of our threat model from the following
perspectives:
Advantages over Model Tampering. Unlike well-understood model
tampering or poisoning, which are highly risky for attackers due to
abundant detection and defense literature [52, 100], our configuration-
based attack is a novel, unexplored vector. As we demonstrate in
Section 6.3, it successfully bypasses traditional defenses, exploiting
a critical blind spot in CPET-hardened DL models.
Reasonable Deployment Scenarios. The threat model is grounded in
realistic deployment practices. CPET-DL frameworks rely on con-
figuration files to operate, e.g., CrypTen uses YAML [53] and EZKL
uses configuration folders [2]. Due to the complexity of CPET, users
often seek optimized configurations from third-party to balance
performance and efficiency [7, 14].
Plausible Knowledge Assumption. The required knowledge of the
input data distribution is a common assumption, consistent with
other attacks like membership inference attacks (MIA) [93], and is
practically achievable. In practice, model owners often provide a
calibration dataset to generate high-quality configurations [7, 107],
which naturally reveals the data’s distribution to the attacker.
Inherent Stealthiness in Configuration Attacks. Malicious configura-
tions are difficult to detect as they are statistically similar to benign
ones (see Appendix F) and induce comparably small accuracy drops
(see Section 6.1). Furthermore, most users also lack the deep cryp-
tographic expertise to manually audit these parameters.
Differences between Adversarial Attacks. Our configuration-
based attack fundamentally differs from traditional adversarial at-
tacks. Conceptually, our attack implants a universal trigger through
malicious configurations in CPET-hardened models, while adver-
sarial attacks generate instance-specific perturbations. Practically,
traditional adversarial attacks are computationally prohibitive in
CPET-DL scenarios since they require extensive model queries to
generate attacking perturbations. We demonstrate that they are
109× to 265× slower than our method (see Table 6 in Appendix D),
rendering them impractical for CPET-hardened models. We elabo-
rate on the conceptual and practical differences between our attack
and adversarial attacks in Appendix D.

5



CCS ’25, October 13–17, 2025, Taipei Yiteng Peng, Dongwei Xiao, Zhibo Liu, Zhenlan Ji, Daoyuan Wu, Shuai Wang, and Juergen Rahmel

Figure 2: Error distribution comparison between CPET-

hardened models with different configurations. Both CPET-

hardened models maintain similar accuracy but show dis-

tinct distributions of activation error.

Table 2: Impact of CrypTen’s precision bits configuration on

model accuracy and ASR. While 9-bit precision maintains

comparable accuracy to the plaintextmodel, it enables higher

ASRs.

Bit Plaintext 8 9 10 11 12

Acc. 91.4% 85.6% 89.8% 89.6% 89.3% 89.6%
ASR 23% 25% 27% 25% 25% 25%

3.2 Observations

Through extensive empirical analysis of the relationship between
CPET-DL framework configurations and model behavior, we iden-
tify several critical observations that motivate and inform our attack
strategy:
Observation I: activation configurations induce different er-

ror distributions.Different configuration settings in CPET-hardened
models can maintain similar overall accuracy while producing dif-
ferent distributions of intermediate neuron value deviations com-
pared to the plaintext model. As shown in Fig. 2, we demonstrate
two different CPET configurations that achieve comparable accu-
racy (89.55% and 89.45% respectively, versus 89.55% in the plaintext
model) on 1,024 test samples. Despite their similar accuracy, these
configurations exhibit significantly different error distributions
in intermediate layer activations. This observation suggests that
specific configurations can selectively affect particular input pat-
terns or features while maintaining the model’s overall usability,
revealing potential vulnerabilities in CPET-hardened models.
Observation II: global configuration impact on attack suc-

cess.Global configuration parameters in CPET-DL frameworks, like
precision settings or cryptographic parameters, can also influence
attack success rates while maintaining model accuracy. As shown in
Table 2, different precision bit settings in CrypTen’s configuration
lead to varying model accuracy and attack success rates. Notably,
using 9-bit precision achieves both the highest accuracy (89.8%)
among all five global configurations and enables a higher ASR (27%)
compared to the plaintext model. These experiments were con-
ducted on 1,024 test samples, with attack evaluation performed on
100 label “7” samples with the target label as “9”.

These observations collectively demonstrate that the configura-
tion space of CPET-DL frameworks provides a rich attack surface
that can be exploited without compromising the model’s apparent
legitimacy. Based on these observations, we propose a novel attack
in the following section.

4 Design of ConPETro

Based on the observed deviation distributions between plaintext
and CPET-hardened models in Section 3.2, we develop ConPETro,
an automated method to identify malicious configurations that
maximize attack success rate while minimizing the impact on CPET-
hardened model accuracy. As illustrated in Fig. 3, ConPETro con-
sists of three main components:
➀ Trigger Selection identifies candidate triggers likely to altermodel
predictions towards the attacker-specified labels. It leverages devi-
ation distribution of intermediate neurons’ outputs and directional
information of model’s overall output to effectively filter promising
trigger candidates.
➁ Activation Configuration Exploration optimizes activation func-
tion configurations and further selects a trigger that achieves opti-
mal accuracy-ASR together with the configuration.
➂ Global Configuration Adjustment fine-tunes global configura-
tions using Bayesian Optimization (BO). This step enables Con-
PETro to efficiently navigate the complex configuration space of
CPET-DL frameworks, ultimately identifying configurations that
achieve high attack success rates without significantly compromis-
ing model accuracy.

4.1 Distribution-Aware Trigger Selection

Design Goal. This step focuses on filtering trigger candidates that
cause different neuron distributions between trigger-embedded and
benign inputs. Intuitively, differences in the neuron output distri-
butions can lead to different model behaviors, which can be ex-
ploited to launch attacks by configuring the CPET-hardened model
to amplify these differences. We use plaintext models for this initial
analysis to reduce computational cost (CPET-hardened models are
10-100x slower; see Table 3). Also, by avoiding analyzing particular
CPET configurations at this stage, we can identify triggers that
could be more generalizable across different configurations.
Technical Challenges. To guide the trigger selection process, we
need to design a metric that can quantify the distribution devia-
tion between trigger-embedded and benign inputs. Nonetheless,
the task of quantifying distribution deviation is non-trivial and
presents several challenges. ➀ The number of trigger-embedded
inputs is much smaller than the number of benign inputs (e.g., the
number of inputs with semantic triggers is small, see Section 5),
thus leading to imbalanced sample sizes. ➁ Subtle neuron output
distribution differences, while important for successful attacks, may
not be easy to capture. ➂ The distribution differences should be
helpful to achieve the desired misclassification direction, i.e., the
trigger should not only cause distribution deviations but also guide
misclassification toward the target label.
Proposed Solutions. To address challenges ➀ and ➁, we propose a
Laplace-smoothing based weighted divergence metric to effectively
quantify distribution deviations across different granularities while
also handling imbalanced sample sizes. To tackle challenge ➂, we
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Figure 3: A high-level workflow of ConPETro.

introduce a directional analysis metric that quantifies the differ-
ences in the target class prediction logits, i.e., the outputs before
conversion to probability with Softmax, between trigger-embedded
and benign inputs. This dual-metric approach allows us to select
triggers that not only exhibit significant distribution deviations but
also guide misclassification toward the desired target label.
Laplace-Smoothing Weighted Divergence Metric. To analyze
the distribution divergence between malicious and benign inputs,
we profile neuron outputs with malicious inputs and benign inputs
separately, and quantify the distributions with histograms — we
partition the value range of neuron outputs into 𝑘 bins, and count
the number of neuron outputs falling into each bin during the pro-
filing process. Denote the histograms for trigger-embedded and be-
nign inputs as 𝐻𝑡 =

[
𝑛𝑡1 , 𝑛𝑡2 , . . . , 𝑛𝑡𝑘

]
and 𝐻𝑜 =

[
𝑛𝑜1 , 𝑛𝑜2 , . . . , 𝑛𝑜𝑘

]
,

respectively, where 𝑛𝑡𝑖 and 𝑛𝑜𝑖 represent the number of neuron
outputs falling into bin 𝑖 .

Since the number of benign inputs is often much larger than
the number of trigger-embedded inputs, the histograms for benign
and malicious inputs are not directly comparable (challenge ➀). We
thus normalize the histograms to account for the different sample
sizes: 𝐻̂𝑜 =

[
𝑛𝑜1
𝑛𝑜
,
𝑛𝑜2
𝑛𝑜
, . . . ,

𝑛𝑜𝑘
𝑛𝑜

]
and 𝐻̂𝑡 =

[
𝑛𝑡1
𝑛𝑡
,
𝑛𝑡2
𝑛𝑡
, . . . ,

𝑛𝑡𝑘
𝑛𝑡

]
, where

𝑛𝑜 =
∑𝑘
𝑖=1 𝑛𝑜𝑖 and 𝑛𝑡 =

∑𝑘
𝑖=1 𝑛𝑡𝑖 .

Directly comparing normalized histograms, however, is still in-
sufficient to capture nuanced differences between the two distribu-
tions (challenge➁). Since the triggers are often designed to be subtle
to keep stealthy, the differences between the two distributions may
appear negligible. For instance, when the benign distribution has
zero values in certain bins while the trigger distribution has close-
to-zero values, the distributions may look similar at first glance.
However, attackers can exploit these differences for successful mis-
classifications. We thus propose a weighted divergence metric to
quantify the distribution deviation, where the weighted score is
calculated as follows:

𝑆𝑑𝑒𝑣 =

𝑘∑︁
𝑖=1

(
log

(
1
ℎ̃𝑜𝑖

)
· ℎ̂𝑡𝑖

)
(1)

, where ℎ̃𝑜𝑖 =
𝑛𝑜𝑖 +1
𝑛𝑜+𝑘 is the Laplace-smoothed normalized benign

histogram, and ℎ̂𝑡𝑖 =
𝑛𝑡𝑖
𝑛𝑡

is the normalized trigger histogram. The
Laplace smoothing prevents infinite weights when benign distribu-
tion values are zero; the reciprocal of ℎ̃𝑜𝑖 assigns higher weights to

bins where benign inputs have near-zero values, and the logarith-
mic transformation prevents large weights from dominating the
score. We then sum 𝑆𝑑𝑒𝑣 across all neurons to obtain the final score
for the trigger candidate.

Note that we also support deviation score calculation at model-
level and layer-level besides for individual neurons. The histogram
profiling is performed for the model’s overall output or for each
layer separately, and the deviation score is computed similarly.
Such flexibility enables comprehensive analysis across granularities,
which is valuable when exploring different non-linear activation
approximation methods in Section 4.2.
Directed Trigger Selection.While triggers exhibiting different
neuron value distributions are more likely to cause divergent be-
haviors between plaintext and CPET-hardened models, the attacker
typically aims to subvert the model’s predictions toward a specific
target label. Therefore, we need to ensure that the selected triggers
not only cause deviated predictions, but also guide the misclassi-
fication toward the target label 𝑙𝑎𝑏𝑒𝑙𝑡 . To that end, we propose a
directional analysis metric that quantifies the distance to the target
label. The directional score 𝑆𝑑𝑖𝑟 examines the difference between
the output logits 𝑝𝑟𝑒𝑑 of malicious and benign inputs for the target
label. A higher directional score indicates that the corresponding
trigger 𝑡 is more likely to misclassify the trigger-embedded inputs
toward the target label. The directional score is defined as follows:

𝑆𝑑𝑖𝑟 =
∑︁

log (max (𝑝𝑟𝑒𝑑𝑡 (𝑙𝑎𝑏𝑒𝑙𝑡 ) − 𝑝𝑟𝑒𝑑𝑜 (𝑙𝑎𝑏𝑒𝑙𝑡 ), 0) + 1) (2)

, where 𝑝𝑟𝑒𝑑𝑡 (𝑙𝑎𝑏𝑒𝑙𝑡 ) and 𝑝𝑟𝑒𝑑𝑜 (𝑙𝑎𝑏𝑒𝑙𝑡 ) are the prediction logits
for the target label 𝑙𝑎𝑏𝑒𝑙𝑡 with trigger-embedded and benign inputs,
respectively. We focus on positive differences, as they indicate that
the trigger is moving the prediction towards the target label. The
logarithm dampens the influence of outliers, and the addition of 1
ensures non-negative values.
Trigger Selection Algorithm. With the deviation distribution
score and the directional score, we now present the trigger se-
lection algorithm in Algorithm 1. The algorithm first generates
𝛼𝑖𝑛𝑖𝑡𝑁𝑡 candidate triggers with the corresponding attack scenario
𝐴 (e.g., attack with non-semantic triggers or semantic triggers; the
generation methods will be elaborated in Section 5), where 𝑁𝑡 is
the number of triggers to be selected and 𝛼𝑖𝑛𝑖𝑡 > 1 is a scaling
factor to determine the initial candidate pool size. Triggers with
ASR higher than a threshold 𝜃𝑎𝑠𝑟 are ruled out in line 3 since they
can be easily detected by plaintext model auditing. The algorithm
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Algorithm 1 Candidate trigger selection algorithm.
1: function TriggerSelection(Plaintext model𝑀𝑝 , Sample dataset 𝐷 , Target label
𝑙𝑡 , Attack scenario𝐴, Candidate Number 𝑁𝑡 , ASR threshold 𝜃𝑎𝑠𝑟 )

2: 𝑇𝑖𝑛𝑖𝑡 ← GenerateTriggers(𝑀𝑝 , 𝐷,𝐴, 𝛼𝑖𝑛𝑖𝑡𝑁𝑡 ) ⊲Generate initial triggers
3: 𝑇𝑖𝑛𝑖𝑡 ← FilterByASR(𝑇𝑖𝑛𝑖𝑡 , 𝑀𝑝 , 𝐷, 𝑙𝑎𝑏𝑒𝑙𝑡 , 𝜃𝑎𝑠𝑟 ) ⊲Remove high ASR

triggers
4: 𝑆𝑑𝑒𝑣 ← {}
5: for 𝑡 ∈ 𝑇𝑖𝑛𝑖𝑡 do

6: 𝑆𝑑𝑒𝑣 [𝑡 ] ← DevScore(𝑀𝑝 , 𝐷, 𝑡 ) ⊲Compute according to Eq. (1)
7: 𝑇𝑑𝑒𝑣 ← TopK(𝑇𝑖𝑛𝑖𝑡 , 𝑆𝑑𝑒𝑣 , 𝛼𝑑𝑒𝑣𝑁𝑡 ) ⊲Select top-scored triggers
8: 𝑆𝑑𝑖𝑟 ← {}
9: for each 𝑡 ∈ 𝑇𝑑𝑒𝑣 do

10: 𝑆𝑑𝑖𝑟 [𝑡 ] ← DirScore(𝑀𝑝 , 𝐷, 𝑡, 𝑙𝑎𝑏𝑒𝑙𝑡 ) ⊲Compute according to Eq. (2)
11: 𝑇𝑐𝑎𝑛𝑑 ← TopK(𝑇𝑑𝑒𝑣 , 𝑆𝑑𝑖𝑟 , 𝑁𝑡 )
12: return𝑇𝑐𝑎𝑛𝑑

calculates the deviation score for each trigger candidate, and selects
the top 𝛼𝑑𝑒𝑣𝑁𝑡 candidates with the highest scores in line 7; the
candidates are further filtered by the directional score in lines 8–11
and the top 𝑁𝑡 candidates are returned.

4.2 Gradient-Oriented Activation Function

Configuration Exploration

Design Goal. As mentioned in Section 2, CPET-DL frameworks
can only approximate activation functions with CPET-DL friendly
operations; the approximated activation function is parameterized
by configurations 𝑐𝑎 that balance functionality and efficiency. By
strategically configuring activation functions, we can amplify the
errors introduced by the candidate triggers in Section 4.1 to achieve
the desired misclassification behavior. This step aims to identify
optimal activation function configurations that maximize the ASR
in CPET-hardenedmodels while minimizing accuracy degradation.2
Technical Challenges. Randomly sampling all possible activa-
tion functions and selecting the best one faces the large search
space problem (challenge ➀). Moreover, the approximated activa-
tion function should be interval smooth to satisfy the constraints
of the activation function approximation methods, yet it is diffi-
cult to guarantee such smoothness during the optimization process
(challenge ➁). In addition, our preliminary results reveal that op-
timizing for two objectives (low accuracy degradation and high
ASR) can easily lead to non-optimal results — we find that over
90% of the configurations yield low ASR in spite of their low accu-
racy degradation, which is not desirable. This could be due to the
high dimensionality of the search space, where the optimization
landscape is highly non-convex and contains many local minima.
Thus, traditional optimization methods like naïve gradient descent
may struggle to find the global optimum, leading to suboptimal
solutions (challenge ➂).
Proposed Solutions. To address challenge ➀, we leverage the
gradient information as guidance for efficient exploration of activa-
tion function configurations. We also propose a gradient-grouping
technique to ensure that the optimized activation function approx-
imation is interval smooth (challenge ➁). To tackle challenge ➂,
we adopt Pareto optimization to optimize the two objectives in
sequence.

2We will discuss the details of activation configuration and corresponding adjustment
method for each CPET-DL framework in Section 5.

Gradient-Oriented Activation Function Configuration. De-
note 𝑙-th to the last layer of the CPET-hardened model as𝑀𝑙𝑒 , and
the input to activation function at the 𝑙-th layer as 𝑥𝑙 . We aim to
guide the optimization of the activation function configurations 𝑐𝑎
with its gradient 𝛿𝑐𝑎 , which is computed as follows:

𝛿𝑐𝑎 =

𝜕ℒ
(
𝑀𝑙𝑒 (𝜎𝑙 (𝑥𝑙 ; 𝑐𝑎) , 𝑙𝑎𝑏𝑒𝑙𝑡 )

)
𝜕𝑐𝑎

(3)

, where the loss function ℒ computes the cross-entropy loss w.r.t.
the target label 𝑙𝑎𝑏𝑒𝑙𝑡 . By optimizing 𝑐𝑎 with the gradient 𝛿𝑐𝑎 , we
can adjust the activation function to maximize ASR on trigger-
embedded inputs. We do not consider the objective of minimizing
the accuracy degradation in this step, as we adopt Pareto optimiza-
tion to optimize these two objectives separately.

By chain-rule, the gradient 𝛿𝑐𝑎 can be decomposed into the prod-
uct of two parts: the gradients of the loss value regarding to the
activation outputs (𝛿𝑙𝑎), and the gradients of the activation outputs
w.r.t. function configurations (𝛿𝑎𝑐 ). To formalize, we have:

𝛿𝑐𝑎 = 𝛿𝑙𝑎𝛿𝑎𝑐 , where (4)

𝛿𝑙𝑎 =

𝜕ℒ
(
𝑀𝑙
𝑒 (𝜎𝑙 (𝑥𝑙 ; 𝑐𝑎) , 𝑙𝑎𝑏𝑒𝑙𝑡 )

)
𝜕𝜎𝑙 (𝑥𝑙 ; 𝑐𝑎)

, 𝛿𝑎𝑐 =
𝜕𝜎𝑙 (𝑥𝑙 ; 𝑐𝑎)

𝜕𝑐𝑎
(5)

Intuitively, the 𝛿𝑙𝑎 captures the impact of the approximation
activation function output on the model’s prediction, while the
second term 𝛿𝑎𝑐 captures how the changes on configuration affect
the approximation activation function itself.
Grouping-Based Gradient Smoothing. Existing plaintext acti-
vation functions, such as sigmoid and tanh, are smooth functions;
CPET approximations of these functions, e.g., lookup tables, should
also be smooth or interval smooth. However, we find that directly
performing gradient-descent optimization with 𝛿𝑐𝑎 can easily lead
to highly sinuated and non-smooth optimized functions. By inspect-
ing 𝛿𝑙𝑎 , the gradients of the activation outputs, we find that for
inputs in a [𝑥𝑙 − 𝜖, 𝑥𝑙 + 𝜖] around an input 𝑥𝑙 , their corresponding
gradients for activation outputs, 𝛿𝑙𝑎 , are highly distinct, sometimes
even with opposite signs. It indicates that after gradient descent
optimization with 𝛿𝑙𝑎 , the activation values 𝜎𝑙 (𝑥 ; 𝑐) for neighbor-
ing inputs will be highly different, thus leading to non-smooth
activation functions (challenge ➁).

We propose a grouping-based gradient smoothing technique to
address this issue. We partition the input space of the activation
function into 𝑘 equally-sized bins. For inputs 𝑥𝑙 in the 𝑖-th bin with
range 𝑅𝑖 , we compute the average gradient 𝛿𝑖

𝑙𝑎
for all inputs in that

bin:
∀𝑥𝑙 ∈ 𝑅𝑖 𝛿𝑖

𝑙𝑎
(𝑥𝑙 ) =

1
|𝑅𝑖 |

∑︁
𝑥∈𝑅𝑖

𝛿𝑙𝑎 (𝑥𝑙 ) (6)

Such grouping-based smoothing effectively ensures that the gra-
dients for inputs within the same bin are similar, thus leading to a
smoother activation function approximation. We then reformulate
the gradient for the overall activation function configurations as:

𝛿𝑐𝑎 (𝑥𝑙 ) =
𝑘∑︁
𝑖=1

𝛿𝑖
𝑙𝑎
(𝑥𝑙 ) · 1(𝑥𝑙 ∈ 𝑅𝑖 ) · 𝛿𝑎𝑐 (𝑥𝑙 ) (7)

, where 1(𝑥𝑙 ∈ 𝑅𝑖 ) is an identity function that equals 1 if the input
𝑥𝑙 is in the 𝑖-th bin and 0 otherwise. In other words, the gradient
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Algorithm 2 Activation Function Configuration Selection
1: function ActivationConfigOpt(Plaintext model𝑀𝑝 , Trigger candidates𝑇𝑐𝑎𝑛𝑑 ,

Sample dataset 𝐷 , Target label 𝑙𝑎𝑏𝑒𝑙𝑡 , CPET-DL Framework 𝐹 , Acc. threshold
𝜃𝑎𝑐𝑐 )

2: 𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ← ∅ ⊲Candidate set of configuration-trigger pairs
3: for each trigger 𝑡 ∈ 𝑇𝑐𝑎𝑛𝑑 do

4: 𝑐𝑎 ← DefaultConfig(𝑀𝑝 , 𝐹 ) ⊲Default configurations
5: 𝑀𝑒 ← Convert(𝑀𝑝 , 𝑐𝑎, 𝐹 ) ⊲Convert the plaintext model to CPET-DL
6: while EvalAcc(𝑀𝑒 , 𝐷 ) < 𝜃𝑎𝑐𝑐 do

7: 𝑀𝑒 ← Convert(𝑀𝑝 , 𝑐𝑎, 𝐹 )
8: 𝛿𝑐𝑎 ← GradComp(𝑀𝑒 , 𝑡, 𝐷, 𝑙𝑎𝑏𝑒𝑙𝑡 ) ⊲Grad. comp. with Eq. (7)
9: 𝑐𝑎 ← GradDesc(𝑐𝑎, 𝛿𝑐𝑎 ) ⊲Grad. descent optimization
10: 𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ← 𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ∪ (𝑐𝑎, 𝑡 ) ⊲Store candidate configurations
11: 𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ← 𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ∪ NeighborConfig(𝑐𝑎, 𝐾 )
12: 𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ← ParetoOpt(𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 ) ⊲Pareto optimization
13: 𝑐𝑎, 𝑡 ← Best(𝐶𝑎𝑛𝑑𝑐𝑎,𝑡 )
14: return 𝑐𝑎, 𝑡

𝛿𝑙𝑎 is now the corresponding average gradient for the bin that 𝑥𝑙
belongs to.
Pareto Optimality for Joint Optimization. Besides searching
for activation function configurations that maximize ASR, we need
to ensure that the accuracy of the model has minimal degradation.
To that end, we adopt a Pareto optimization approach to jointly
optimizing ASR and accuracy. For two configurations 𝑐1𝑎 and 𝑐2𝑎 , we
deem that 𝑐1𝑎 dominates 𝑐2𝑎 if and only if:

ASR(𝑐1𝑎, 𝑡) ≥ ASR(𝑐2𝑎, 𝑡) and Acc(𝑐1𝑎) ≥ Acc(𝑐2𝑎) (8)

, where ASR(𝑐𝑎, 𝑡) is the ASR of the CPET-hardened model with
configuration 𝑐𝑎 and trigger 𝑡 , and Acc(𝑐𝑎) is the accuracy of the
model with configuration 𝑐𝑎 . The Pareto optimal configurations are
those that are not dominated by any other configuration, meaning
that there is no other configuration that can improve ASR without
sacrificing accuracy. As a result, we can select the configurations
that simultaneously maximize ASR and accuracy.
Overall Algorithm. The overall algorithm for activation function
configuration selection is in Algorithm 2. For each trigger in the
candidate set obtained from Section 4.1, we iteratively optimize the
default activation configurations until the CPET-DL model’s accu-
racy reaches a sufficiently high threshold (line 6). In each iteration,
we convert plaintext model to CPET-hardened model with 𝑐𝑎 (line
7) and compute its gradients with Eq. (7) (line 8), and perform a
step of gradient descent optimization with the gradients (line 9).
We also add 𝐾 randomly selected neighboring configurations of
the optimized 𝑐𝑎 to the candidate set to enlarge the candidate set
for the Pareto optimization step (line 11). After all triggers have
been processed, we apply Pareto optimization to the candidate con-
figurations to identify the Pareto optimal configurations (line 13).
Finally, we select the configuration and trigger pair that maximize
ASR(𝑐𝑎, 𝑡) + Acc(𝑐𝑎) as the final optimal solution (line 14).

4.3 Global Configuration Optimization

Design Goal. Besides the activation function configurations, global
configurations for CPET-DL model conversions also influence the
model’s performance (see Section 2). These configurations, denoted
as 𝑐𝑔 , are for the entire model and are not specific to individual
activation functions. By optimizing these global configurations, we
can further enhance model’s ASR and accuracy.

Algorithm 3 Global Configuration Optimization
1: function GlobalConfigOpt(Plaintext model𝑀𝑝 , Trigger 𝑡 , Activation config-

uration 𝑐𝑎 , Sample dataset 𝐷 , Target label 𝑙𝑎𝑏𝑒𝑙𝑡 , Random Sample Size 𝐾 , Max
Iteration 𝑁 , CPET-DL Framework 𝐹 )

2: 𝐶𝑎𝑛𝑑𝑐𝑔 ← ∅ ⊲Candidate set of global configurations
3: 𝐷𝑎𝑠𝑟 ← MarginSample(𝐷,𝑀𝑝 , 𝑙𝑎𝑏𝑒𝑙𝑡 , 𝐾 ) ⊲ASR evaluation samples
4: 𝐷𝑎𝑐𝑐 ← MarginSample(𝐷,𝑀𝑝 , 𝑙𝑎𝑏𝑒𝑙𝑡 , 𝐾 ) ⊲Accuracy evaluation samples
5: 𝑐𝑔 ← DefaultConfig(𝑀𝑝 , 𝐹 ) + RandomNoise( ) ⊲initialization
6: for 𝑖 = 1 to 𝑁 do

7: 𝑐𝑔 ← BO(𝑀𝑝 , 𝐷𝑎𝑠𝑟 , 𝐷𝑎𝑐𝑐 , 𝑐𝑔, 𝑐𝑎, 𝑡 ) ⊲Bayesian optimization
8: 𝐶𝑎𝑛𝑑𝑐𝑔 ← 𝐶𝑎𝑛𝑑𝑐𝑔 ∪ 𝑐𝑔
9: return 𝐵𝑒𝑠𝑡 (𝐶𝑎𝑛𝑑𝑐𝑔 )

Technical Challenges. Evaluating the effectiveness of a single
global configuration requires running inference on the entire dataset
to compute the ASR and accuracy. Given the large size of the dataset
and the high computational cost of running inference on CPET-DL
models, this process can be significantly time-consuming. To ad-
dress this challenge, we leverage Bayesian optimization (BO), which
is a powerful technique for optimizing expensive-to-evaluate func-
tions like automated machine learning (AutoML) [31] and hyperpa-
rameter tuning [99]. BO is thus well-suited for our problem, given
the high computational cost of evaluating global configurations.
BO for Global Configuration Search. BO iteratively samples data
points from the configuration space and builds a probabilistic model
of the objective function. It requires an acquisition function 𝑈 (𝑐𝑔)
to evaluate the utility of each configuration 𝑐𝑔 in the search space.
In this work, we apply GP-hedge [19] that dynamically selects the
best acquisition function.
Overall Algorithm. The overall algorithm for global configura-
tion optimization is in Algorithm 3. To further reduce the cost of
evaluating the whole dataset, we select 𝐾 samples from the dataset
based on their margin values — the samples closest to classification
decision boundaries (lines 3–4). The algorithm starts with randomly
initialized configurations based on default configurations (line 5),
and iteratively explores the configuration space with BO to identify
promising configurations (lines 6–8). After 𝑁 iterations, it selects
the best configuration that maximizes ASR and accuracy (lines 9).

5 Implementation and Setup

Implementation & Ethical Concerns. To facilitate reproducibil-
ity, we release and will maintain our artifact ConPETro at [1]. All
hyperparameters such as the number of partitioned bins 𝑘 men-
tioned in Section 4, are released as well. The implementation of
plaintext models is based on PyTorch [81]. The CPET-hardened
models are built with APIs specified by CPET-DL frameworks. All
experiments are conducted on a server with an AMD Ryzen 3970X
CPU and 256GB of memory. We clarify the potential ethical con-
cerns of our work in Appendix A.
Datasets and Models.We select representative datasets supported
by all three CPET-DL frameworks, including FMNIST [104], CIFAR-
10 [55], MNISTM [36], Credit [55], and Bank [75], which cover
both image and tabular data types. We implement convolutional
neural networks (CNNs) and multi-layer perceptrons (MLPs) for
these datasets in CPET-DL frameworks. The details of datasets and
models are described in Appendix C.
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Table 3: Inference time ofCPET-hardenedmodel and running

time of ConPETro on three CPET-DL frameworks in CPU.

CPET Inference Trigger Activation Global

Framework Time/Input Selection Config. Opt. Config. Opt.

CrypTen 0.15s 1.75s 74.73s 8.08s
TenSEAL 1.53s 1.41s 23.90s 633.73s
EZKL 0.26s 1.37s 46.10s 127.65s

CPET-DL Frameworks and Configurations. To demonstrate
the generalizability of ConPETro, we select one representative
CPET-DL framework from three different CPET schemes: Open-
Mined’s TenSEAL for HE, Meta’s CrypTen for MPC, and EZKL, a
well-received ZK-ML library, for ZKP. The selected frameworks
are widely used by industry and the research community; they
have the highest number of stars on GitHub among their respec-
tive categories and have with around 1K stars each. The detailed
descriptions of these frameworks are given in Appendix B.

We mainly leverage configuration settings in Table 1 for attacks.
Specifically, for adjusting the non-linear approximation configu-
ration, we optimize the table mapping values of quantized inputs
for lookup table-based approximation in EZKL and leverage least-
square optimization to find the optimal coefficients for polynomials
approximation in TenSEAL. For the CrypTen framework based on
Newton-Raphson iterations that can adjust the configuration of
each neuron, we choose 20% of the neurons with the highest abso-
lute value sum of gradient and adjust the number of their iterations
and the initial point following the direction of gradient descent. For
global configuration settings, we optimize the configuration related
to real-number approximation, such as precision bits or scaling fac-
tors, in each CPET-DL framework. Additionally, for TenSEAL and
EZKL, whose performance can be significantly influenced by CPET
scheme-related configurations, we also adjust their specific settings:
the coefficient modulus bits for TenSEAL and themaximum logrows
for EZKL.
Efficiency of ConPETro. In Table 3, we demonstrate the infer-
ence time of the CPET-hardened model and the running time of
ConPETro on three CPET-DL frameworks in CPU with MNISTM
dataset. While the inference of the plaintext model requires about
2.3× 10−3 seconds per image, the CPET-hardened model takes over
10 to 100 times longer due to the computational overhead of CPET
schemes. The main cost of ConPETro is configuration optimiza-
tion. In our implementation, we simulate the activation function
approximation to accelerate the configuration adjustment. Due to
limited support for privacy-preserving inference in batches, global
configuration optimization in TenSEAL and EZKL take more time
than in CrypTen. Since the default configuration optimization pro-
vided by EZKL on 1K calibration samples takes over 1,300 seconds,
we clarify that ConPETro is practical and can be faster with the
continued development of the CPET-DL framework.
Evaluation Metrics. Following the attacker’s objective discussed
in Section 3.1, we evaluate the effectiveness of ConPETro using
the following metrics:
Accuracy Degradation. It is inevitable that the model’s accuracy
will be affected by the CPET-DL conversion process (see Section 2).
Nonetheless, lower accuracy degradation compared to the plaintext

model suggests that the CPET-hardened model has similar behavior
to the plaintext model in general, making the attacks stealthier.
Plaintext Model ASRmeasures the ratio of successful attacks on the
plaintext model. ASR closer to 1/𝐶 for a 𝐶-class classification task
on the plaintext model indicates that the attack trigger is less likely
to be detected by plaintext model auditing [97], thus increasing the
stealthiness of the attack.
CPET-hardened Model ASR represents the ratio of successful at-
tacks on the CPET-hardened model. Higher ASR indicates that our
attack effectively compromises the security of these models.
Attack Scenarios and Settings.We evaluate ConPETro on two
different attack scenarios: non-semantic triggers and semantic trig-
gers. Compared to existing works on CPET configuration opti-
mization for performance that use 10K training data as calibration
samples [7], we further tighten the restrictions on the number of
calibration data for real-world situations where large-scale calibra-
tion samples may not be available. Specifically, we limit the attacker
to having access to 1K calibration samples from the validation set
in the non-semantic triggers and 5K samples for semantic triggers.

To generate triggers, we follow the literature of each attack
scenario. We leverage Projected Gradient Descent (PGD) [69] al-
gorithm to generate non-semantic triggers, and CLIP [86] to find
semantic triggers. Non-semantic triggers are generated by mutat-
ing a square patch whose size is less than 5% of input images or
randomly selecting three feature values in tabular data; semantic
triggers are formed by gathering the 20 most semantically similar
images for each input data in the calibration dataset.

6 Evaluation

We aim to answer the following research questions (RQs):
RQ1: Can ConPETro successfully attack CPET-hardened models

while maintaining stealthiness on plaintext models?
RQ2: How do key components of ConPETro contribute to the

overall effectiveness?
RQ3: Can existing detection and defense mechanisms identify and

mitigate the security risks posed by our attack?

6.1 RQ1: Attack Effectiveness and Stealthiness

Attack Setup. To answer this question, we measure the three key
metrics mentioned in Section 5 across different attack scenarios
and datasets. We evaluate ASR and the accuracy of plaintext and
CPET-hardened models. Due to the high computational cost of
CPET-DL models, we randomly select 200 samples from the test
dataset to evaluate ASR and 1K samples to assess accuracy loss. As
mentioned in Section 3.1, our triggers are designed to be universal,
converting predictions of inputs from a source label to a target
label. Due to the computational overhead of CPET, we randomly
sample 20% of all combinations of labels as sources and targets,
resulting in 18 combinations in total. We do not evaluate EZKL
on the model for CIFAR-10 since it does not support the GeLU
activation function directly in this model. We repeat the experiment
five times to account for the influence of randomness during attack
and report the average results with standard deviations. The main
attack results in Table 4 show the average ASR in both plaintext and
CPET-hardened models, along with accuracy degradation across
all datasets and frameworks.
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Table 4: Effectiveness and stealthiness of ConPETro over five runs. 𝐶 denotes the number of classes in the dataset. “Avg. Acc.

Decrease” indicates the average accuracy decrease after conversion from plaintext to CPET-DL. The average attack success

rate of plaintext models (“Pln. Avg. ASR”) is close to random guesses, while the CPET-hardened model shows significant

improvement (“CPET Avg. ΔASR”).

CPET

Datasets 𝐶
Avg. Acc. Pln. Avg. CPET Avg. CPET Max CPET Avg.

Framework Decrease ASR ASR. ASR. ΔASR

CrypTen

FMNIST 10 -3.28 ± 0.12% 8.07 ± 0.59% 76.83 ± 1.08% 99.10 ± 0.49% ↑ 68.77 ± 1.12%
CIFAR-10 10 -4.69 ± 0.10% 12.51 ± 1.63% 52.16 ± 2.51% 80.12 ± 6.79% ↑ 39.65 ± 1.67%
MNISTM 10 -3.62 ± 0.17% 10.78 ± 0.21% 64.25 ± 1.44% 89.50 ± 6.49% ↑ 53.47 ± 1.24%
Credit 2 -1.21 ± 2.83% 52.65 ± 0.25% 66.30 ± 10.98% 75.90 ± 12.64% ↑ 13.65 ± 11.16%
Bank 2 -4.42 ± 1.89% 51.00 ± 0.65% 69.65 ± 7.44% 87.20 ± 17.03% ↑ 18.65 ± 7.13%

TenSEAL

FMNIST 10 -3.61 ± 0.79% 7.78 ± 0.18% 27.58 ± 1.21% 89.40 ± 2.85% ↑ 19.81 ± 1.29%
CIFAR-10 10 -4.96 ± 1.26% 11.95 ± 0.63% 23.69 ± 1.32% 57.60 ± 4.75% ↑ 11.74 ± 1.07%
MNISTM 10 -4.24 ± 0.44% 10.77 ± 0.63% 27.46 ± 0.69% 58.30 ± 5.35% ↑ 16.69 ± 0.41%
Credit 2 +0.03 ± 0.27% 52.55 ± 0.51% 67.35 ± 0.86% 85.10 ± 0.86% ↑ 14.80 ± 0.66%
Bank 2 -1.80 ± 0.82% 37.25 ± 7.53% 45.45 ± 8.99% 54.10 ± 9.72% ↑ 8.20 ± 2.78%

EZKL

FMNIST 10 -1.07 ± 0.15% 7.98 ± 0.50% 19.72 ± 0.61% 73.00 ± 6.99% ↑ 11.74 ± 0.59%
MNISTM 10 -2.47 ± 0.22% 10.71 ± 0.37% 22.05 ± 1.14% 42.20 ± 1.60% ↑ 11.34 ± 1.02%
Credit 2 -0.67 ± 0.42% 53.00 ± 0.76% 57.15 ± 2.42% 60.20 ± 1.69% ↑ 4.15 ± 2.36%
Bank 2 -1.20 ± 0.41% 46.40 ± 3.88% 51.30 ± 3.06% 60.00 ± 3.19% ↑ 4.90 ± 2.33%

Attack Effectiveness. As shown in the last but one column of
Table 4, the maximum ASR for CPET-hardened models exceeds
50% in most of the datasets and frameworks, demonstrating the
severity risks of our attack. The average ASR for encrypted models
in TenSEAL and EZKL is lower than that in CrypTen — TenSEAL
and EZKL support coarser configuration granularity than CrypTen,
making it more difficult to make subtle configuration changes
that achieve the same level of ASR without sacrificing accuracy.
Nonetheless, we still observe a significant increase in ASR between
CPET-hardened models compared to plaintext models, indicating
the effectiveness of our approach. We even achieve over 60% in-
crease in ASR on the FMNIST dataset with the CrypTen framework,
which is a significant improvement over the plaintext model.
Attack Stealthiness. As mentioned in Section 3, the attack on
CPET-DL models is designed to be stealthy. The average accu-
racy degradation after converting the plaintext model to a CPET-
hardened model is minor, ranging from approximately 3%~4% for
image datasets to around 1% for most tabular datasets. This drop
may stem from inherent limitations of CPET-DL conversion pro-
cess, such as the approximation of real numbers and non-linear
functions, as discussed in Section 2.1. Some existing works also
show that even optimal benign configurations can lead to about
2% accuracy drop [7, 80]. Moreover, our findings in Appendix E
reveal that attackers can also trade ASR for stealth, achieving only
1% accuracy drop on image datasets with a slightly lower ASR.
These results indicate that the CPET-hardened model preserves
the plaintext model’s functionality, and users are less likely to no-
tice our attack during their normal usage. In addition, the ASR on
plaintext models are close to 1/𝐶 , where 𝐶 is the number of classes
in the dataset. We interpret this as an encouraging observation:
this trigger might be likely perceived as noise, leading the model
to predict randomly, rather than a malicious attack. As a result,
auditors for plaintext models will probably deem that the plaintext
model is safe from trigger attacks, while the CPET-hardened model
is actually compromised. Such an observation further demonstrates
the stealthiness of our attack. We further discuss stealthiness in

Section 6.3 by demonstrating that existing detection and defense
mechanisms are ineffective against our attack.
Generalizability to Semantic Trigger Attack. To demonstrate
the generalizability of ConPETro to other types of triggers, we also
evaluate semantic triggers. Unlike non-semantic triggers that are
visually imperceptible, semantic triggers bear semantic meaning,
e.g., adding a blue background to an image. These triggers are more
natural and pose a greater risk of being overlooked by users.

We explored the possibility of semantic trigger attacks towards
CPET-hardened models under the CrypTen framework due to its
finer-grained granularity of configuration adjustments. We use
CLIP [86], an zero-shot visual concept recognition model, to gather
the 20 most semantically similar images for each input data in
the calibration dataset and form the potential semantic trigger
set. As shown in Fig. 4, by adjusting configurations in the CPET-
DL models, we can attack the model with over 50% of success
rate, even as high as 94% in the MNISTM dataset. In constrast,
the corresponding plaintext models are much less vulnerable to
the semantic triggers, effectively hiding the attack from plaintext
auditing. Such observations demonstrate the generalizability of our
attack to other trigger types.

Answer to RQ1: ConPETro achieves high ASR on CPET-
hardened models while maintaining stealthiness. The attack
is also generalizable to semantic triggers.

6.2 RQ2: Influence of Individual Components

We use CrypTen on FMNIST, MNISTM, and CIFAR-10 datasets to
evaluate whether the key components of our attack can effectively
generate malicious configurations. We evaluate the effectiveness
of the two major components of ConPETro — trigger selection
(Section 4.1) and configuration optimization (Sections 4.2 and 4.3).
Effectiveness of Trigger Selection. To evaluate the effective-
ness of our trigger selection method, we use the ASR increase of
CPET-hardened models compared to plaintext models as the met-
ric. We enable/disable our proposed trigger selection, denoted as
“W. Select” and “W./O. Select” respectively, in Fig. 5. As mentioned
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Figure 5: Effects of trigger selection and generation methods.

in Section 5, we generate initial triggers for later selection with
the PGD algorithm. To evaluate the influence of the initial trigger
generation method, we also perform evaluations under PGD and
random trigger generation methods, denoted in Fig. 5 as “PGD” and
“Random”, respectively. For each setting, we generate 5 triggers for
the 18 source-target label pairs, then apply the same configuration
optimizations to each setting to assess ASR increase.

The statistical results are presented in the box diagrams of Fig. 5.
Regardless of the trigger generation method, our trigger selection
method consistently improves ASR compared to disabling it. This
demonstrates that our divergence- and direction-aware selection
effectively identify triggers that mislead model predictions. Addi-
tionally, we observe significant ASR increases even when coupling
our trigger selection with random generation, highlighting the ef-
fectiveness of our optimization approach; it also implies inherent
risks of CPET-DL models, which are vulnerable even when the
attacker has limited resources to generate triggers.
Effectiveness of ConfigurationOptimization. In this setting, we
evaluate the effectiveness of the configuration optimization method.
In one setting, we optimize configurations with our gradient-guided
method, while in the other setting, we optimize configurations and
triggers with Pareto optimization only without gradient guidance.

The scatter plot in Fig. 6 illustrates the ASR increase (compared
to plaintext models) and accuracy of CPET-hardened models after
configuration optimization, where higher values indicate better
performance. Across all datasets, our optimization method consis-
tently outperforms the Pareto-only method. This is attributed to its
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Figure 6: Comparison of configurations selected by our

method and Pareto optimization only. The original plain-

text model accuracy is illustrated in “Pln. Acc.”.

gradient-guided configuration adjustments, which more effectively
navigate the configuration space. While ConPETro’s performance
is slightly reduced onmore complex datasets (as shown in Fig. 6) due
to the intricate configuration spaces, the attack remains significant.
The fact that we can still achieve substantial ASRs even on these
datasets highlights the inherent vulnerability of CPET-hardened
models. Furthermore, we note that critical sectors like finance and
healthcare often deploy smaller, specialized models, as discussed in
Section 2.1. The diverse datasets used in our evaluation effectively
demonstrate the broad applicability and seriousness of this attack.
While the Pareto-only method shows some success on the simpler
FMNIST dataset, it struggled to identify malicious configurations in
more complex datasets. Notably, our method is able to generate con-
figurations that significantly increase the attack success rate with
minimal impact on model accuracy, as seen in our data points in
the upper right corner of the scatter plot. The Pareto-only method’s
difficulty in discovering these configurations further highlights the
effectiveness of our approach and underscores the serious risks
posed by our CPET-DL specific attack.

Answer to RQ2: Our divergence- and direction-aware trig-
ger selection mechanisms and gradient-guided configuration
optimization methods are both crucial for the attack’s success.

6.3 RQ3: Effectiveness under Detection and

Defense Mechanisms

We have discussed the stealthiness of our attack in Section 3, where
we show that model owners are unlikely to notice the attack on
CPET-DL models. Here, we further demonstrate that existing detec-
tion and defense mechanisms are ineffective against our attack. Im-
portantly, due to the lack of gradient information fromCPET-hardened
models and limited operations supported by CPET-DL frameworks
with heavy computational overhead, few existing defense/detection
methods can be applied on CPET-hardened models. Nonetheless, we
consider two representative methods that do not rely on gradi-
ents: PatchCleanser [102], a defense strategy by input masking, and
AEVA [43], a black-box backdoor detection tool. We evaluate the
effectiveness of these methods against our attack in the CPET-DL
scenario.
Trigger Attack Defense. All inputs to CPET-DL models are en-
crypted, thus defense mechanisms that require access to plaintext
inputs are not applicable. We thus only consider existing defense
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Table 5: Effectiveness of ConPETro under existing defense

mechanism. “Avg. ASR Before Defense” and “Avg. ASR Af-

ter Defense” indicates the average ASR of selected triggers

before applying PatchCleanser, while “Avg. Δ ASR” denotes

the average ASR decrease after applying PatchCleanser.

Datasets

Avg. ASR Avg. ASR Avg.

Before Defense After Defense Δ ASR

FMNIST 89.21% 85.50% -3.71%
CIFAR-10 69.14% 60.50% -8.64%
MNISTM 71.60% 59.65% -11.95%

techniques that do not require access to plaintext data, and choose
PatchCleanser, a black-box defense mechanism by input masking,
as a representative. We apply PatchCleanser to all CPET-hardened
models in CrypTen on source-target label pairs with ASR greater
than 60%, as higher ASR attacks represent more critical vulnerabil-
ities requiring defense. For FMNIST and MNISTM, we use Patch-
Cleanser’s default settings, which involve 6 masks, resulting in
average inference time of 28.26s and 43.91s per dataset, respectively.
For the more complex CIFAR-10 dataset, even reducing the number
of masks to 2 results in a high average inference time of 261.80s per
image. Such substantial computational overhead underscores the
challenges of applying existing defenses to CPET-DL scenarios. As
shown in Table 5, the average ASR after applying PatchCleanser
remains high, still greater than about 60% across all three datasets,
with only about 10% ASR decrease in the best case. This indicates
that the attack remains effective even after the defense is applied.
The activation function and global configurations cause CPET-DL
models to exhibit different behavior than plaintext models, while
existing defenses fail to account for such differences and thus are
ineffective in mitigating the attack.
Trigger Attack Detection. We also evaluate whether existing
attack detection methods can identify our attack. We exclude meth-
ods relying on gradient information, plaintext inputs, or model
parameters, as they are inapplicable to CPET scenarios. We use
AEVA [43], a black-box backdoor detection method, as a represen-
tative. Due to high time costs of CPET-enhancing computation, we
select 6 sample images for each source-target label pair (540 sam-
ples in total) for AEVA to detect backdoors. We apply AEVA to four
CPET-hardened models whose backdoor ASR is greater than 40%
in CrypTen. However, after 60 hours per model, AEVA reports no
backdoors. The large number of iterative inference computations
for attack detection limits AEVA’s efficiency on CPET-hardened
models. In addition, since our attack is launched by maliciously
configuring the model rather than poisoning the training data, the
detector’s assumptions about the model’s behavior may not hold.

Answer to RQ3: Existing defense and detection methods are
inadequate to counter our attack. This highlights the significant
risks posed by our approach and underscores the need for more
targeted defense strategies.

7 Discussion

Attacking Other Types of PETs.While our work focuses onMPC,
ZKP, and HE-based CPET-DL frameworks, our approach differs
fundamentally from attacks on DP and FL. This distinction arises

from the underlying technical foundations: MPC, ZKP, and HE
rely on cryptographic primitives to protect data confidentiality dur-
ing inference, whereas DP employs statistical techniques to limit
information disclosure, and FL distributes computation across mul-
tiple participants. Our attack specifically exploits vulnerabilities in
the conversion process from plaintext models to CPET-hardened
formats — a unique characteristic of CPETs. 3 This conversion ne-
cessity creates an attack surface that does not exist in DP or FL
systems. Furthermore, the configurations we manipulate (activa-
tion function approximations, precision levels, etc.) are specific to
cryptographic computation and have no direct parallels in statisti-
cal privacy mechanisms. Consequently, our attack methodology is
largely orthogonal to techniques targeting DP (such as reconstruc-
tion attacks) or FL (such as model poisoning), highlighting the need
for specialized security analyses of each paradigm.
AlternativeVulnerabilities.Our attack focuses on alteringmodel’s
predictions during inference time. However, CPET-DL models are
also potentially vulnerable to other threats, including training-time
attacks and fairness degradation. Membership inference attacks,
model inversion attacks, and model extraction attacks could also
possibly exist in the CPET-DL context. We hypothesize that the
unique characteristics of CPET-DL, such as the approximations and
configurations introduced during the conversion process, might
even amplify the effectiveness of these attacks. Exploring the appli-
cability of these training-time attacks to CPET-DL models repre-
sents a promising direction for future research.

Our work centers on the security of CPET-hardened ML models,
investigating attack vectors that arise from configuration choices.
However, responsible deployment of ML systems necessitates con-
sideration of other critical aspects, like fairness. Fairness in plaintext
ML models has been extensively studied [71], revealing potential
biases. It is therefore a natural extension to investigate how the
configurations inherent in CPET-DL impact fairness. We hypothe-
size that the parameter choices during the conversion process could
introduce or amplify biases, potentially leading to discriminatory
outcomes. The effect of CPET-DL configurations on fairness is non-
trivial, and a thorough investigation of this is beyond the scope of
this paper. We leave it as a potential avenue for future research.

8 Related Work

Testing and Configuring PET Systems. With the rapid develop-
ment of PETs, there is a growing demand for usability and correct-
ness checks of these privacy-related algorithms. To facilitate user
adoption, several PET-related frameworks and compilers [48, 76, 87]
have been developed, accompanied by research into vulnerabili-
ties within these PET compilers [61, 103]. Significant attention has
also been devoted to testing and verifying differential privacy pro-
grams [15, 101, 108]; secure machine learning based on FL has also
been explored [54, 88, 91]. Additionally, there are also works focus-
ing on applying crypto-based PETs to DL [44, 67, 73], optimizing
related parameters [7, 82] to improve accuracy and efficiency of
CPET-hardened models, or identifying their deviation behaviors
from plaintext models using differential testing [79, 83]. In contrast
3Advanced FL frameworks like SecretFlow [5] also provide configurations to balance
model accuracy and privacy. However, the underlying mechanisms are a bit different
from those in CPETs. For example, SecretFlow uses MPC protocols to perform FL,
which is not the same as the MPC-based CPET-DL frameworks we focus on.
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to these existing works, this research is the first to systematically
investigate and reveal security risks in CPET-hardened models.
Supply Chain Attacks on Machine Learning Pipelines. Recent
work has highlighted that plaintext ML pipelines are vulnerable to
a variety of supply chain attacks, targeting different components
from open-source dependencies [45] to models on public hubs [72].
These threats include data- and model-oriented attacks like data
poisoning [20, 51] and backdoors [41, 56], as well as the exploita-
tion of vulnerabilities within the ML infrastructure itself, such as
in ML frameworks/compilers [27, 28] and compiled plaintext ML
models [60], or even in pseudo random number generators [30]
and Python runtime [37]. While these approaches focus on com-
promising the plaintext ML model or its dependencies, our work
reveals a novel and different attack vector: we are the first to show
how manipulating the configuration of CPET-DL frameworks can
be used to compromise the security of the CPET-hardened model.

9 Conclusion

We present ConPETro, the first systematic attack that exposes
stealthy security risks through malicious configuration manipu-
lation in CPET-DL frameworks. Our comprehensive evaluations
across three widely adopted CPET-DL frameworks demonstrate
ConPETro’s effectiveness and highlight the limitations of current
detection and defense mechanisms, which predominantly focus
on plaintext models. Our findings reveal critical security gaps in
CPET-hardened models, emphasizing the urgent need to develop
robust CPET-DL protection mechanisms.
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A Ethical Statement

We believe that publishing our paper and publicly disclosing the
potential risks in the malicious configuration of CPET-hardened
models is both ethical and responsible. Our ethical considerations
are guided by the principles for technology research outlined in the
Menlo Report [10]. Our work does not involve human subjects or
private user data; all experiments were conducted in a controlled,
local environment using publicly available datasets and frameworks
to eliminate any potential risk of harm to individuals or public
services. In addition, we also recognize that the development of
CPET-hardened models is still in its early stages (as discussed in
Section 2.1), and our objective is to proactively raise awareness of
this specific attack surface. By responsibly disclosing our findings
now, we aim to encourage timely mitigation strategies before these
technologies see widespread adoption, thereby preventing future
harm and contributing to a more secure system.

B Details of CPET-DL Frameworks

CrypTen is an MPC framework for machine learning developed
by Meta that integrates seamlessly with PyTorch [53]. It employs
arithmetic and binary secret sharing to support two-party secure
computation (2PC) with a trusted third party. In our evaluation,
we create a two-party computation environment where one party
provides private data, while the other party supplies the trained
model. This setup allows for private inference without exposing
plaintext data or models.
TenSEAL is a library for tensor homomorphic encryption opera-
tions [13] based on Microsoft SEAL [92]. It provides support for
vector operations under the BFV [33] and CKKS schemes. CKKS,
which facilitates real-number operations in cryptographic-level, is
widely regarded as the most suitable HE scheme for machine learn-
ing applications. Therefore, we utilize this scheme to encrypt the
tested machine learning models.

EZKL, developed by Zkonduit, is a library and command-line tool
designed for performing inference on deep learning models and
other computational graphs within a zero-knowledge proof frame-
work [2]. Users export their plaintext models as ONNX files along
with sample inputs in JSON format. EZKL then generates a ZK-
SNARK circuit, enabling the proof of various statements about
neural network execution on private or public data.

C Details of Datasets and Models.

We evaluate our attack ConPETro across various data types, in-
cluding images and tabular data, while selecting widely recognized
machine learning tasks in the CPET-DL scenario, such as image
classification, credit score prediction, and deposit subscription pre-
diction. 10% of the training data in each dataset is partitioned into
the validation dataset. The link to access each dataset can be found
in our codebase [1].
FMNIST [104] contains 28x28 grayscale images of fashion items la-
beled into 10 categories, serving as a replacement for the traditional
MNIST [58] dataset with more semantic information. We imple-
ment a one-layer convolutional network with two fully connected
layers and achieve an accuracy of 81.19%.
MNISTM [36] is created by combining MNIST [58] digits with ran-
domly color patches as backgrounds, allowing us to explore the
effects of color on classification accuracy. We adopt a similar struc-
ture to the FMNIST model, adding a max pooling layer after the
convolutional layer, achieving 91.23% of accuracy. Due to the com-
putational complexity of HE and the lack of support for max pooling
in TenSEAL, we divide the HE-hardenedmodel ofMNISTM into two
parts like [35], focusing on privacy-persevering computation of the
last two linear layers and the corresponding activation functions.
CIFAR-10 [55] consists of 50,000 training samples and 10,000 test
samples, each a 32x32 color image, with the objective of recognizing
objects across 10 categories. We use a model with two convolutional
layers and max pooling, followed by three linear layers with the
GeLU activation function, achieving an accuracy of 76.33%. Similar
to MNISTM, we also partition this model in TenSEAL, focusing on
the last two linear layers and the corresponding activation functions
for computational feasibility.
Credit [105] dataset, commonly used for credit score prediction,
includes tabular features related to individuals’ credit profiles, such
as age, income, and credit history. The task is to predict whether
an individual is likely to have good or bad credit based on these
features. We use undersampling to balance this dataset and imple-
ment a three-layer MLP with Sigmoid activation for this dataset,
achieving an accuracy of 73.59%.
Bank [75] dataset is another tabular dataset used for predicting
deposit subscriptions, containing information about bank clients,
including their demographic, economic, and banking features. Sim-
ilar to the Credit dataset, we apply undersampling to balance the
dataset and use a three-layer MLP with Tanh activation, achieving
an accuracy of 88.14%.

D Configuration Attacks vs. Adversarial Attacks

This section elaborates on the comparison in Section 3.1 between
our configuration-based attack and traditional adversarial attacks.
We describe the conceptual and practical differences between these
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Figure 7: ASR and accuracy trend on CPET-hardened models

during ConPETro’s configuration searching process.

two attack methods, highlighting the unique advantages of Con-
PETro in the context of CPET-DL.

Conceptually, ConPETro aims to implant a trigger in CPET-
hardened models by maliciously modifying the model’s configura-
tion, which is fundamentally different from adversarial attacks that
rely on perturbing input data to mislead the model. The implanted
triggers corrupt the CPET-hardened model’s integrity at its core,
allowing for long-term, hidden compromise of a machine learn-
ing model rather than ephemeral misclassifications. This method
grants precise control over the model’s misbehavior, enabling the
attacker to trigger specific, desired outcomes consistently. Also,
our method is stealthier since the implanted trigger is only acti-
vated in the CPET-hardened model, effectively invalidating auditing
mechanisms on plaintext models.

Practically, traditional adversarial attacks are both limited in
applicability and effectiveness in CPET-DL scenarios. White-box
adversarial attacks like PGD [69] are impractical, as the model is
deployed on server-side and shielded by CPETs, making gradient
information inaccessible during inference. Black-box attacks, on
the other hand, become computationally prohibitive. To quantify
the computational overhead, we benchmark the time cost for a
mainstream [64, 89, 90, 109] black-box adversarial attack, Pixle [85],
against CPET-hardened models. The results, presented in Table 6
as the average of 10 independent runs, demonstrate the significant
cost of black-box adversarial attacks on CPET-hardened models.
These iterative attacks require numerous queries to identify an
attacking perturbation for each input; since CPET-hardened models
are slow in inference (see Section 5), these attacks become pro-
hibitively expensive. In contrast, although ConPETro requires an
offline phase to search for the malicious configuration and triggers,
it only needs to be performed once and takes merely dozens of sec-
onds (see Table 3). During the online attacking phase, ConPETro
applies the pre-computed triggers to the input data and queries
the model with the trigger input. The attack does not require re-
peated queries, and the time to launch an attack is almost equivalent
in cost to a standard inference on CPET-hardened models. More-
over, our triggers are universal, meaning they can be used across
multiple inputs, which are significantly more generalizable than
instance-specific adversarial perturbations. These results demon-
strate the superior efficiency of our configuration-based attack over
traditional black-box adversarial methods in CPET-DL scenarios.

Table 6: Time cost per attack input with the traditional black-

box adversarial attacks and ConPETro on CPET-hardened

models. The computational overhead of traditional adver-

sarial attack (“Traditional Adv. Time”) is hundreds of times

higher than our configuration-based attack (“ConPETro At-

tack Time”).

CPET

Datasets

Traditional Adv. ConPETro

Framework Attack Time Attack Time

CrypTen

FMNIST 23.76s 0.10s
MNISTM 19.60s 0.13s
CIFAR-10 100.84s 0.42s

TenSEAL

FMNIST 445.32s 1.92s
MNISTM 182.64s 1.36s
CIFAR-10 110.19s 1.01s

EZKL

FMNIST 47.64s 0.18s
MNISTM 38.17s 0.25s

E Trend of ASR and Accuracy Loss During

Configuration Optimization

To further analyze the trade-off between the computational cost of
our configuration search and its effectiveness in terms of ASR and
stealth, we plot the performance curves for the FMNIST, MNISTM,
and CIFAR-10 datasets on the CrypTen framework in Fig. 7. Each
curve represents the average of five runs on random selected source-
target label pairs, with the shaded area indicating the standard devi-
ation. The results demonstrate that ConPETro efficiently improves
ASR with each iteration while having a minimal impact on the
CPET-hardened model’s accuracy. Notably, on FMNIST, ConPETro
even achieves an ASR of approximately 70% around 33 iterations,
with only about 1% drop in model accuracy. This analysis not only
demonstrates that our attack is effective but also suggests that it is
feasible for attackers to succeed even with a nearly unnoticeable
accuracy loss and modest computational effort.

F Examples and Analysis of Configurations in

CPET-DL Frameworks

This section provides concrete examples of the benign andmalicious
configurations, and presents a quantitative analysis of configura-
tion distributions to demonstrate these malicious configurations’
stealth. Fig. 8 compares a benign and a malicious non-linear func-
tion configuration for the TenSEAL framework on the FMNIST
dataset. Fig. 8a illustrates that the non-linear activation functions
in the CNN model are approximated by polynomials, which are
configured by a set of coefficients, 𝑎3, 𝑎2, 𝑎1, 𝑎0. These coefficients
can be adjusted with APIs provided by TenSEAL (shown in Fig. 8c),
allowing users to configure polynomial coefficients for each layer’s
activation function. We show both benign and malicious coefficient
configurations in the first two layers of the model. As can be seen in
the table in Fig. 8a, both benign and malicious configurations have
similar coefficients. To visualize the difference, we plot the polyno-
mial functions in Fig. 8b, which shows that the two configurations
produce similar approximation functions in each layer. The result-
ing accuracy from the two configurations is also similar, with the
benign model achieving 80.5% accuracy and the malicious model
achieving 78.4% accuracy. Note that both configurations inevitably
lead to accuracy degradation compared to the plaintext model’s
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(a) Benign and malicious polynomial coefficients configurations.
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(b) Visualization of approximation functions in each layer.

# approximation activation of benign config. Layer 0
activation_params = [4.73e-01,1.05e-01,4.65e-04,-4.06e-04]
enc_x = enc_x.polyval(activation_params)

1.
2.
3.

(c) Code-level implementation example.

Figure 8: Example of benign and malicious configurations

for TenSEAL.

81.2% accuracy, since the polynomial approximation for the acti-
vation function is not perfect. Despite the similarity in coefficient
values and accuracy loss, the ASR of the malicious configuration
is significantly higher than that of the benign configuration, in-
creasing from 9.0% to 72.5%. This demonstrates the simultaneous
effectiveness and stealth of our attack.

To statistically assess the indistinguishability between benign
and malicious configurations, we generate a total of 468 pairs of be-
nign and malicious configurations within the TenSEAL framework.
This quantity was derived from 18 source-target pairs (discussed
in Section 6.1) applied across models for FMNIST, MNISTM, and
CIFAR-10. These models possess 8, 8, and 10 configurable coeffi-
cients, respectively. Consequently, the total number of configura-
tions is 18 × (8 + 8 + 10) = 468. We first compute the Hellinger
distance between benign and malicious configuration distributions.
For FMNIST, MNISTM, and CIFAR-10, the distances are 0.038, 0.069,
and 0.097, respectively. Since a distance closer to 0 indicates greater
similarity, these results shows that malicious configurations can
be manipulated to be similar to benign ones. Additionally, we per-
form a two-sample Kolmogorov-Smirnov (K-S) test [70] to further
demonstrate the indistinguishability of benign and malicious con-
figuration distributions. We find that for all datasets, these two
configuration distributions cannot be considered inconsistent un-
der the K-S test at the 5% level of significance (𝛼 = 0.05). These
results provide further statistical evidence that the distributions are
indistinguishable, making attack detection based on configuration
analysis difficult.
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